
The 2023


Kubernetes 
Security Report
The 2023 Kubernetes Security Report, based on 
our analysis of over 200,000 cloud accounts, 
uncovers risks in K8s environments and discusses 
security controls and mitigation steps.

The data is updated as of August 2023



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 2

Table of Contents 

Executive Summary 3

Data Collection and Analysis 4

Kubernetes Attack Chain in Detail 4

General Usage 5

Initial Access 7

Control Plane 7

Data Plane 9

Lateral Movement and Privilege Escalation 10

RBAC Permissions 10

Container Escape 10

In-cluster separation 12

Impact 13

Denial of Service 13

Pivoting to the cloud 14

Security Controls and Mitigations 15

About wiz 17



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 3

Executive Summary

Kubernetes (K8s) has transformed the way applications are deployed and managed in the cloud-
native landscape. However, as Kubernetes adoption continues to soar, so do the security risks. The 
purpose of this report is to prioritize the existing risks based on real-world data, and to highlight 
appropriate defense recommendations.

1 Insights

The Wiz Threat Research team has analyzed the Kubernetes security posture of over 200,000 cloud 
accounts. In the process of preparing this report, we observed the expected trends (dominance of 
managed K8s distributions, popularity of EKS etc.), but we also saw statistics that surprised us (such 
as underutilization of security controls).


By analyzing the obtained statistics in the context of a typical K8s attack chain, we gained the 
following insights�

� An attacker has the least chance of obtaining initial access through the control plane: the 
proportion of Kubernetes control plane misconfigurations or vulnerabilities is relatively low. 
Data plane vulnerabilities offer more opportunities for attackers�

� Once an attacker is past the initial access, the opportunities are ample for lateral movement and 
privilege escalation within a cluster�

� Impact is the last line of defense, and the security practices there are lacking — especially 
concerning the cloud impact due to the multitude of options to pivot into cloud. These options 
will only grow as Kubernetes becomes more tightly integrated into a bigger cloud environment�

� Perhaps the worst trend we’ve seen is the underutilization of existing security controls applicable 
across the attack stages. This suggests the need for security feature adoption to be prioritized by 
the community over the introduction of new security features.

2 Recommendations

As K8s cluster operators, we cannot control the rise of attacks, but we can prepare to address them 
“smartly.” This is the premise of this report. To cite a basketball analogy: we propose using a zone 
defense. In zone defense, instead of each player guarding a corresponding player on the other team, 
every defensive player is given an area (a zone) to cover. Instead of reactively pairing security controls 
for every potential attack vector, we propose proactively covering the most vulnerable points and 
using the wider security options as a backup shield. Specifically, we recommend�

� Continuous scanning for external exposure, and externally-facing security posture reviews for 
initial access protection�

� Detection and remediation of critical vulnerabilities in the publicly-exposed pods and services — 
for initial access protection and attack surface reduction�

� Runtime protection — detection of malicious code execution to catch attacks that passed 
through the initial defense.



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 4

� Aggressive usage of in-cluster separation security controls: first and foremost Pod Security 
Standards; but also smart namespace-based isolation with RBAC, network policies, and user 
namespaces for prevention of lateral movement�

� Continuous review of IAM and RBAC hygiene of K8s workloads — to constrain the impact 
of potential compromise at the namespace / cluster level, and prevent pivoting to a broader 
cloud environment.

Data Collection and Analysis

In this report — which is based on our scans of over 200,000 cloud accounts — we dive into the 
state of Kubernetes security, providing statistics that shed light on the prevalence of threats in 
Kubernetes environments and uncovering risks that often go unnoticed.


By projecting the observed statistics onto the typical Kubernetes attack chain, we can reason about 
the most vulnerable points on the ecosystem. That’s why, rather than listing statistics in an ad-hoc 
fashion, we quantify the risks by attributing them to the stages of the full attack path — from initial 
access to impact. For every attack stage, we apply a series of statistics. To conclude, we also provide 
a series of statistics on security controls and mitigation methodss. With this report, we hope to 
enable the cloud-native community to examine issues such as the weakest links in environments and 
the easiest ways to defend against attacks.

1 Kubernetes Attack Chain in Detail

The typical attack chain on a Kubernetes cluster is as follows:

Privilege escalatio�
� Container escap�
� RBAC permissions

Lateral movemen�
� Namespace separatio�
� Network policies

Attacker

Control plan�
� Anonymous API acces�
� kubectl prox�
� Sensitive interfaces

Data plan�
� Image poisonin�
� App vulnerabilit�
� Management interfaces

Initial access

Loca�
� DoS of K8s service�
� Local secret�
� Cryptomining

Clou�
� Cloud secret�
� Image poisonin�
� Other cluster�
� Cloud cryptomining

Impact

K8 attack chain study results: once an attacker is in the cluster, there 
is not much in place to stop them



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 5

First, the attacker must gain initial access to the cluster — either through the control or data plane. 
Then, multiple iterations of lateral movement or privilege escalation might follow until the attacker 
reaches their goal, which is manifested in Impact. For every attack stage — Initial Access, Lateral 
Movement, Privilege Escalation, Impact – we devise and obtain relevant statistics and offer 
takeaways. In addition, we show the usage of security controls.

2 General Usage

First and foremost, we provide a general Kubernetes usage statistic to define the context of the 
future numbers. The most basic statistic is the ratio of managed vs. self-managed clusters — it 
shows a definitive preference for managed clusters in cloud. 

Managed vs. self-managed clusters

Managed Clusters Self-Managed Clusters

Digging deeper into the popularity of cluster flavors, EKS emerges as the most prevalent platform 
(which is not a surprise), followed by AKS and GKE. EKS is also a leader among those tenants who  
use a single Kubernetes platform.

Single platform tenantsPlatform distribution

0%

EKS AKS GKE OKE OpenShift Others

5%

10%

15%

20%

25%

30%

AKS

EKS

GKE

OKE

OpenShift

Other



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 6

Cluster version distributions show that users generally follow upgrades and adopt the new versions 
quickly. For example, even though version 1.27 was released in April and adopted by CSPs in June, the 
portion of v1.27 clusters in use is comparable with clusters on v1.25. However, with the extremely fast 
release cycle of three months on average, Kubernetes maintains release branches for the most recent 
three minor releases, which amounts to releases for approximately 1 year. CSPs generally offer a 
similar, albeit delayed, support span. Hence, prompt version migration in K8s clusters is extremely 
important. As a reference, v1.24 is upstream EOL since July of this year. As such, over 58% of clusters 
have actually passed upstream EOL.

Maintained Cluster versions

End of life cluster versions

Cluster 
version 
distribution

1.16 and lower 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27

Inspecting the CSP End of Support dates, we find the best version update hygiene in GKE, with EKS 
and AKS having a similar number of unsupported versions:

5% 10% 15% 20% 25% 30%0%

Unsupported cluster versions by CSP

AKS GKE EKS



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 7

When slicing the version distribution numbers by cluster flavor, we observe different distribution 
profiles per CSP:

1.16 and lower 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27

Version 
distribution 
per CSP

AKS Versions EKS Versions GKE Versions 

� EKS is generally slower to upgrade. EKS also is the only platform where we observe the concept of 
the “sticky” versions, with K8s users staying on them longer than others. The stickiest versions 
are v1.21 and v1.23. Given the fact that the last supported EKS cluster version is v1.24, it is 
surprising to see so many unsupported EKS versions�

� GKE has on average the most updated version profile and does not have older versions running�

� AKS allows users to run older Kubernetes versions, with the oldest observed version being 1.7 —  
which reached upstream EOL in April 2018!

3 Initial Access

Recent attacks on Kubernetes infrastructures show attackers’ preference for using control 
plane misconfigurations for initial access. However, our numbers suggest that this is driven 
by the ease of exploitation, rather than by the prevalence of control plane misconfigurations. 
We project that as control plane security defaults improve, awareness increases, and 
control plane misconfigurations become rarer, attackers will turn to the data plane vectors, 
which will then provide more attack surface potential.

Control Plane

There are several attack vectors that attackers can use to land access to the cluster. They can be 
roughly categorized in two types — control plane exposure and data plane exposure. We explore both 
vectors.


Probably the easiest way to get into the cluster is to abuse a public API server with anonymous 
authentication enabled.



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 8

Public clusters are very common, and in fact, we observed that there are more public than private 
clusters (69%). However, to explore the API server exposure, we looked beyond the ratio of public vs. 
private clusters, for anonymous access misconfiguration.


The first condition for this dangerous API server exposure is enabled anonymous authentication. It is 
enabled by default on EKS and GKE and disabled on AKS. In addition, a system:anonymous user must 
be bound to an interesting role with a non-trivial access (by default, system:anonymous is bound 
to the system:viewer role, which only allows access to basic info about the cluster, such as showing 
the cluster version). When counting clusters with these conditions, less than 1% of the clusters answer 
the requirements:

Public vs. private clusters

Public Private

Clusters with non-trivial anonymous access

<1%

Public managed clusters

Public Managed Clusters with Non-Trivial Anonymous Access



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 9

Compared to vulnerabilities in the data plane, vulnerabilities in the Kubernetes control plane are often 
overlooked. We were shocked to still find clusters vulnerable to CVE-2021-25741 — the last high-
severity vulnerability in the K8s control plane since 2021. This vulnerability allows malicious images to 
access the host file system and, in effect, escape into the host.

Data Plane

For data plane exposure risks, we looked at pods behind Kubernetes load balancers or ingress that 
are verifiably reachable from the internet. This provides a more relevant statistic rather than looking 
at the images across all pods. This analysis showed that out of total exposed pods, 52% contain 
container images with known vulnerabilities. Alarmingly, this number does not drop significantly 
when restricted to higher-severity vulnerabilities. About 44% of the images have High or Critical 
severity vulnerabilities. These numbers are generally consistent with other studies that show 
vulnerability prevalence. Having said that, the vulnerabilities in the exposed containers should be 
higher priorities than the vulnerabilities in the rest of the data plane.

44% of exposed pods have critical or high-
severity vulnerabilities

Vulnerabilities in exposed pods

We were also interested in knowing how widespread the anti-pattern is when it comes to managing 
the pods and containers in a “non-Kubernetesy” way. Unfortunately this still happens, although these 
incidents are very rare: only about 0.27% of clusters include containers with exposed SSH access. 
Management interfaces leading straight into containers can give easy access to attackers bypassing 
the traditional Kubernetes-level security controls.



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 10

3 Lateral Movement and Privilege Escalation

The numbers show ample opportunities for attackers to move laterally within the cluster — 
either through the usage of the compromised workload permissions or through a worker 
node as a shared medium. Security separations in the cluster are underutilized.

RBAC Permissions

The proper configuration of Role-Based Access Control (RBAC) plays a main role in safeguarding the 
integrity and confidentiality of clusters. RBAC allows administrators to fine-tune access controls, 
granting permissions based on roles and responsibilities. However, when falling into the wrong hands, 
those permissions can be abused to laterally move within a cluster.


Our analysis shows that 8% of pods possess elevated RBAC permissions, potentially extending 
beyond operational needs. Within non-kube-system pods, 5.9% have elevated RBAC permissions.


Additionally, we analyzed the presence of cleartext cloud credentials within container images 
allowing elevated RBAC permissions. Our findings reveal that only 0.1% of pods employ images with 
these credentials in cleartext.

Pods with elevated privileges

6% of non-kube-system 
pods have high RBAC 

privileges

0.1% of pods contain cleartext 
credentials with high RBAC 

privileges

8% of pods have high RBAC 
privileges

Container Escape

Having fewer boundaries between container and host increases the potential for unauthorized 
access, privilege escalation, and lateral movement. This section looks at the different techniques used 
for container escape, including an analysis and statistics that reveal the widespread presence of 
such misconfigurations.



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 11

The first misconfiguration we examined is mounts of sensitive external host paths within pods. Our 
analysis reveals that among the examined pods, 18% engaged in this practice.


Another significant facet in the domain of container escape is the manipulation of various system 
capabilities assigned to pods. Among these, privileged pods stand out — pods granted a predefined 
collection of system capabilities. Typically, not all these capabilities are required for the pod's 
intended functionality; only specific ones are truly necessary. 10% of pods run as privileged. Further 
analysis shows that 6% of pods had specific risky system capabilities assigned. Overall, 16% of pods 
are assigned capabilities (in one way or another) that would allow container escape.


Lastly, container escape presents a concerning possibility for pods that operate with root privileges. 
When a pod runs as the root user (assuming no user namespace separation), it gains unfettered 
access to the host system, bypassing the typical security boundaries. In our investigation, we found 
that a notable subset of pods, approximately 18%, are configured to run with root privileges.

Pods with escape capabilities

16% of pods have risky 
system capabilities

18% of pods run as root18% of pods have sensitive 
mounted host paths

Overall, 22% of pods exhibit susceptibility to one or more of the aforementioned misconfigurations. 
Consequently, attackers can exploit any of these vulnerabilities to move laterally within clusters, 
potentially escalating their privileges to attain higher levels of access and control.



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 12

In-Cluster Separation

By default, there is no network-level separation within the cluster. Pod A in namespace A can 
communicate with and access the services of Pod B in namespace B. This, of course, enables lateral 
movement within the cluster. Kubernetes Network Policies define the networking restrictions within 
the cluster on a policy level. We found that, among the observed clusters, only 9% have namespaces 
with network policies. In our opinion, the multi-tenancy in Kubernetes should be given more security 
attention through better namespace-isolation controls. Potentially through extension of the existing 
security frameworks (i.e. ).PEACH

Network policy usage in clusters

Clusters without network policies

Clusters with network policies

Kubernetes clusters are usually organized into namespaces. This structural design not only 
establishes a clear logical separation, but also contributes to security delineation within the cluster by 
segregating resources and principals into distinct namespaces. A barrier is established against 

 for potential attackers.


Our numbers show a bad practice of grouping the workloads into the same namespace: about 
7.5% of clusters have only one data plane namespace (default).

lateral 
movement

https://www.peach.wiz.io/
https://www.wiz.io/academy/what-is-lateral-movement
https://www.wiz.io/academy/what-is-lateral-movement


Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 13

Namespace usage in clusters

7.5% of organizational clusters use 
only one data plane namespace

4 Impact

Best practices for cloud permission usage, although introduced some time ago by CSPs, are not 
followed by most cluster operators. We still too often see over-provisioning of cloud roles and 
usage of the worker node identity.

Denial of Service

Compromised pods lacking resource quotas can potentially serve as vectors for resource exhaustion 
attacks. Malicious actors can exploit the absence of resource constraints to consume excessive CPU, 
memory, or other resources, eventually leading to Denial of Service (DoS) or Distributed Denial of 
Service (DDoS) attacks, causing significant disruptions and rendering legitimate applications or 
services inaccessible due to resource depletion.


Our research shows that 19% of pods are currently running without resource quotas in Kubernetes 
clusters. This implies that a notable portion of the cluster's workloads are not subject to resource 
limitations, potentially creating an environment where certain pods can consume resources 
disproportionately. Proactively enforcing resource quotas for all pods becomes crucial to mitigate 
the threat of resource-based attacks and to ensure fair, efficient, and secure resource utilization 
across the environment.



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 14

Pivoting to Cloud

A critical consideration arises when workload permissions must extend beyond the confines of the 
Kubernetes cluster itself. In such a scenario, the cloud environment becomes susceptible to potential 
attacks if adversaries manage to compromise the pod.


Pods are capable of acquiring cloud permissions in two ways: either by inheriting the worker node 
identity (the older and not recommended way), or by using more secure CSP-provisioned 
mechanisms (such as IRSA in AWS). The latter method enables you to securely assign AWS IAM roles 
to Kubernetes Service Accounts (SAs) assigned to pods. This delineates two distinct pathways by 
which a pod gains the authority to interact with various resources and services.


Among all the pods scrutinized, a significant 15% possessed permissions that reach outside the 
cluster. This revelation underscores the unsettling prospect of unauthorized infiltration into the 
broader cloud environment.

15% of pods have access to the cloud 
beyond the cluster boundaries

Pods with cloud access

15% of pods have access to the 
cloud beyond the cluster boundaries

60% of pods with access to the cloud, 
have it through the worker node identity

40% 60%

Further examination of the data revealed a significant trend: 60% of pods with permissions outside 
the clusters obtained them through the worker node identity. This contradicts best practices, as it 
leads to a lack of granularity in permissions. All pods on a node sharing the same permissions can 
result in over-privilege, increasing the risk of breaches by expanding the attack surface.



Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 15

5 Security Controls and Mitigations

The numbers show an increasingly concerning trend of weak security control adoption. This 
might be expected with such a complex feature as User Namespaces, but PSS has been 
around since v1.21. We observed two alarming trends: (1) clusters migrating from PSP without 
adopting PSA or 3rd-party admission controllers, and (2) underutilization of the PSS 
Restricted mode.

For safeguarding Kubernetes clusters, a range of tools is available. Among these, the first and most 
straightforward was called PodSecurityPolicy (PSP), a Kubernetes feature engineered to enforce 
security policies on newly created Pods within the cluster. PSP enabled the definition and oversight of 
the security context for new pods. With the arrival of Kubernetes version 1.21, PodSecurityStandards 
(PSS) was created, offering a less-flexible but simple-to-use system of isolation ranks for pods on a 
namespace level. To enforce PSS, Pod Security admission controller (PSA) was introduced in parallel. 
Additionally, external admission controllers like Kyverno and Gatekeeper offer further safeguards for 
Kubernetes clusters. These intervene and process requests directed at the Kubernetes API server 
before they are persisted into the cluster's control plane, encompassing operations such as the 
creation, modification, or deletion of resources. As of Kubernetes version 1.25, PSP is no longer 
available. We talked extensively about migration strategies from PSP to PSS in this  post.


Based on our findings, we observe an encouraging trend in Kubernetes cluster security, revealing that 
merely 6% of clusters do not utilize PSP, external admission controller, or have at least one namespace 
without PSS enforced. This outcome underscores a commendably high level of protection across 
most clusters.


However, upon closer examination of clusters running version 1.25 and above — wherein 
PodSecurityPolicy (PSP) is no longer available — a different picture emerges. Within this subgroup, 
only 39% of clusters utilize a third-party admission controller or built-in Pod Security admission 
controllers in all data plane namespaces. This statistic underlines the ongoing challenge in achieving 
widespread PSS adoption, as a significant portion of clusters remain potentially vulnerable following 
the deprecation of PSP.

blog

https://www.wiz.io/blog/from-pod-security-policies-to-pod-security-standards-a-migration-guide


Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 16

Notably, the fact that EKS  the version migration from v1.24 to v1.25 even if the 
customer “loses” PSP in the process can partially explain this trend.

does not prevent

Evolution of 
security policies

All clusters Clusters v1.25+

Has preventive measures

Lacking preventive measures

Has preventive measures

Lacking preventive measures

To gain more insight into the PSA usage, we zoomed in to a namespace level. We counted the non-
control-plane namespaces regardless of the cluster version, and observed the usage of the labels 
that control the PSA. We learned that only about half of the data plane namespaces have PSA labels 
of any PSS level. This is expected because we included namespaces belonging to the older cluster 
versions as well.

PSA in K8s 
namespaces

Data plane namespaces with PSA

Control Plane namespaces

Data Plane namespaces without PSA

https://docs.aws.amazon.com/eks/latest/userguide/pod-security-policy-removal-faq.html


Kubernetes Security Report 2023 by Wiz

© Wiz Inc. All Rights Reserved. 17

However, when zooming in to namespaces with PSP/PSA and slicing the numbers by PSS level, we can 
see: (1) the obvious preference for Baseline over other levels, and (2) a disturbing drop in enforce 
mode applications in the Restricted level. A mere 0.13% of namespaces enforce Restricted level, which 
represents a x100 drop compared to Audit / Warning mode of the same level. This implies that users 
generally find Restricted mode to be impractical for use with production workloads.

0

Privileged Baseline Restricted 

0.05

0.1

0.15

0.2

0.25

0.3
PSA mode usage

Enforce mode Audit/Warning mode

Another recent security feature introduced in v1.25 is User Namespaces. This feature is touted as an 
additional isolation layer that improves host security and prevents many known container escape 
scenarios. We performed a deep dive into this feature in one of our  and highlighted various 
limitations. It appears that these limitations, coupled with the lack of implementation on a container 
runtime side, contribute to a shocking  pod instances using this feature in the field.

blog posts

ZERO

About Wiz 

Wiz secures everything organizations build and run in the cloud. Founded in 2020, Wiz is the fastest-
growing software company in the world, scaling from $1M to $100M ARR in 18 months. Wiz enables 
hundreds of organizations worldwide, including 35 percent of the Fortune 100, to rapidly identify and 
remove critical risks in cloud environments. Its customers include Salesforce, Slack, Mars, BMW, Avery 
Dennison, Priceline, Cushman & Wakefield, DocuSign, Plaid, and Agoda, among others. Wiz is backed 
by Sequoia, Index Ventures, Insight Partners, Salesforce, Blackstone, Advent, Greenoaks, Lightspeed 
and Aglaé.


Visit https://www.wiz.io/ for more information.

https://www.wiz.io/blog/enhancing-kubernetes-security-with-user-namespaces
https://www.wiz.io/

