
9 BEST PRACTICES 
FOR ARTIFACT MANAGEMENT
Artifacts are the valuable building blocks and products of 

software development. In today's fast-paced and rapidly evolving 

software development landscape, effectively managing artifacts 

has become a critical factor in ensuring business success. 

Understanding and implementing effective artifact management 

practices can significantly enhance your productivity, streamline 

processes, and ensure the successful delivery of software projects.

This ebook aims to provide you with an overview of nine best 

practices for artifact management. We'll explore each best practice 

and provide actionable tips along the way.  

By following the recommendations outlined here, you'll be 

equipped with the knowledge and tools necessary to efficiently 

handle artifacts throughout their lifecycle.



9 BEST PRACTICES

1   Store packages and artifacts in a tool designed to house that specific file type 03

2   Segregate artifacts and dependencies with a local, remote, and virtual repository structure 04

3   Proxy public registries for a locally cached set of artifacts 05

4   Have repositories for each stage of development 06

5   Assign each team a dedicated set of local, remote, and virtual repositories 07

6   Promote – never rebuild – artifacts across SDLC environments 08

7   Store and manage the metadata associated with each artifact alongside it 09

8   Create policies to define who can access a given repository and what actions they can take 10

9   Define cleanup policies for repository hygiene and performance 11



All rights reserved 2024 © JFrog Ltd. | 3

and artifacts into folders, tags, and other categories, 
allowing users to easily find the packages and artifacts 
they need. It also makes it easier to keep track of the 
different versions of packages and artifacts.

1. 	STORE PACKAGES AND ARTIFACTS IN A TOOL DESIGNED TO HOUSE THAT 	
	 SPECIFIC FILE TYPE

No two package types are the same — their structure, contents, and configurations will vary. While it’s possible to store multiple file 
types in one generic repository, organizations that take this approach will end up limiting the automation of their software pipelines and 
reducing the data captured as part of their development process. That’s why it’s generally recommended to store packages and artifacts in 
repositories designed to house a given package type.

WHY IT’S IMPORTANT
Each package manager has specific sets of commands, 
specifications, and data outputs. To allow for  automation 
and seamless integration into your software pipelines, 
the repositories you store your artifacts in must be able 
to integrate and communicate with the various tools 
used in your build processes. 

Storing packages and artifacts in a tool designed 
specifically for that file type also allows for easier 
metadata capture.  
When packages and artifacts are stored in a tool 
designed for that file type, the tool can capture and store 
information about the files, such as the type of file, when 
it was created, who created it, and any other related 
information. 

Another reason this is an important best practice is that 
it makes it easier to stay organized. A tool designed for 
a specific file type can be used to organize the packages LEARN MORE

Package Managment Tool Consolidation

https://jfrog.com/usecase/package-management-tool-consolidation/


All rights reserved 2024 © JFrog Ltd. | 4

Modern software applications consist of multiple packages and 
dependencies. This includes components built in-house and open 
source projects that you use to expedite your releases. For example, 
as part of a project, you may need logging functionality. Rather than 
build and test a whole logging framework from scratch, you can rely 
on OSS logging frameworks like log4j, which are more advanced or 
mature.

Best practice recommends using a repository structure that includes 
local, remote, and virtual repositories. 

In local repositories, you can store all of your intellectual artifacts, 
which you build as per your business needs. 

Use remote repositories to cache packages from public OSS 
repositories like Maven Central, Docker Hub, npm, etc.

Virtual repositories offer a unique way to ease the administration 
of repository management. Since it’s an aggregation of both local 
and remote repositories, you can use a virtual repository as a single 
endpoint to build new proprietary artifacts by resolving OSS package 
dependencies and publishing intellectual artifacts to Artifactory.

2. 	SEGREGATE ARTIFACTS AND DEPENDENCIES WITH A LOCAL, REMOTE, AND 	
	 VIRTUAL REPOSITORY STRUCTURE

WHY IT’S IMPORTANT
For security, structural, and compliance reasons, 
organizations need an easy way to store and organize 
artifacts so that it’s clear which are proprietary and which 
are pulled in from public places (i.e. dependencies). To 
better keep intellectual artifacts separate from non-
intellectual artifacts, it’s best to use separate repositories 
for these two different classifications of artifacts.

By using local and remote repositories, organizations can 
separate their intellectual artifacts from non-intellectual 
artifacts. Using virtual repositories, organizations can 
ease the administration and governance efforts when 
change is required.

Virtual
Repository

Local
Repository

Remote
Repository

LEARN MORE
Best Practices for Structuring and Naming Artifactory Repositories

https://jfrog.com/whitepaper/best-practices-structuring-naming-artifactory-repositories/?_gl=1*je8qee*_ga*MTA5NDQ5NjU4Ny4xNjY2NjA5MTI2*_ga_SQ1NR9VTFJ*MTY2ODQzMjY5NS42Mi4xLjE2Njg0MzkxMTcuMzUuMC4w


All rights reserved 2024 © JFrog Ltd. | 5

These days, open-source packages act as the basis of all software 
that's in use. Developers and build systems often rely on these open 
source and third-party libraries, which are typically hosted on remote 
systems on the internet, in order to build software applications. 
As ubiquitous as this practice is, there are certain challenges that 
organizations face when relying on publicly hosted artifacts. 

3. 	PROXY PUBLIC REGISTRIES FOR A LOCALLY CACHED SET OF ARTIFACTS

Local
Repository

Remote
Repository

Virtual
Repository

Public Registry

Proxy

Problems can arise if artifacts/ dependencies are no 
longer in the public repositories, or if network bottlenecks 
cause reliability issues. Additionally, traceability can be 
difficult if dependencies are downloaded directly from 
the internet. Caching artifacts in remote repos locally 
provides reliable and consistent package access without 
requiring constant downloads.

WHY IT’S IMPORTANT
Organizations must address reliability, availability, 
security, and traceability when dealing with artifacts from 
public registries.

Don’t allow developers to download packages directly 
from the internet
Organizations looking to adopt security best practices will 
leverage their artifact repository manager as an intermediary 
between developers and the internet by proxying public 
registries. Even if a malicious package doesn’t make its way into 
the build, if a developer downloads a piece of malware onto 
their device, it could expose the entire network and system. 
Accessing all packages through a tool like Artifactory provides a 
first layer of defense and control.

SECURITY BEST PRACTICE

LEARN MORE
Managing Open Source Security Risks and Vulnerabilities

https://jfrog.com/devops-tools/article/managing-open-source-security-risks-and-vulnerabilities/


All rights reserved 2024 © JFrog Ltd. | 6

4. 	HAVE REPOSITORIES FOR EACH STAGE OF DEVELOPMENT

WHY IT’S IMPORTANT
By establishing repositories for each SDLC stage, 
organizations can move all the components that are part 
of a potential release to repositories aligned to each 
stage, control when the software is promoted (typically 
once they’ve passed certain validations), control who can 
access the components depending on which stage of the 
SDLC the components are in, and never rerun a build for 
a piece of the release at any time. This approach helps 
organizations improve integrity and security, and enables 
transparent tracking of the status of software releases.

Organizations should maintain repositories aligned with every stage of their SDLC. Software releases consist of multiple builds/packages/
artifacts, and organizations mature software for release by moving it through stages of the SDLC and performing various tests at each stage.

DEV

dev-docker-local

dev-maven-local

dev-generic-local

QA

qa-docker-local

qa-maven-local

qa-generic-local

PROD

prod-docker-local

prod-maven-local

prod-generic-local

Promotion

RELEASE
BUNDLE

Promotion

RELEASE
BUNDLE

LEARN MORE
Rethinking the SDLC

https://jfrog.com/user-conference/rethinking-the-sdlc/


All rights reserved 2024 © JFrog Ltd. | 7

5. 	ASSIGN EACH TEAM A DEDICATED SET OF LOCAL, REMOTE, AND VIRTUAL 	
	 REPOSITORIES

Each team or “project” should be given its own dedicated set of repositories for use in software development. Further, the artifact 
management solution you use should have some sort of management entity for grouping resources such as repositories, builds, release 
bundles, and pipelines. This will allow for easier delegation of resources to a specific team.

WHY IT’S IMPORTANT
This is considered best practice for many reasons. First, while 
the instinct for organizations is to store all of their artifacts in 
a single system, it might make more sense for certain teams 
to have access to a predefined subset of artifacts for simplicity 
and security purposes. 

Additionally, assigning each team their own set of repos makes 
it easier for them to find and access the components they need 
to work on, share components across different teams, and 
replicate or federate specific repos when necessary. 

When you’re working with very large repositories, this can 
get complicated. Assigning teams their own set of repos also 
removes some of the burden and maintenance overhead from 
the central admin. For example, a central admin may not know 
what they can remove or update without impacting a given 
team. Finally, it’s a smart financial move as this allows for more 
efficient and traceable allocation of costs to specific teams.

LEARN MORE
JFrog Federated Repositories

https://jfrog.com/solution-sheet/jfrog-federated-repositories/


All rights reserved 2024 © JFrog Ltd. | 8

6. 	PROMOTE – NEVER REBUILD – ARTIFACTS ACROSS SDLC ENVIRONMENTS

DEV

dev-docker-local

dev-maven-local

dev-generic-local

QA

qa-docker-local

qa-maven-local

qa-generic-local

PROD

prod-docker-local

prod-maven-local

prod-generic-local

Promotion

RELEASE
BUNDLE

Promotion

RELEASE
BUNDLE

The software development lifecycle (SDLC) includes different steps, ranging from initial planning and design to coding, testing, deployment, 
and maintenance. One essential element of the software development lifecycle is the transfer of artifacts from one environment to another. 
To make the process as efficient and effective as possible, it's recommended to promote the artifacts rather than rebuild them for each stage.

WHY IT’S IMPORTANT
Promoting artifacts across the software development lifecycle 
helps to ensure consistency, reliability, and traceability while 
saving time and resources. By promoting rather than rebuilding 
artifacts, developers can trust that the code they’re testing 
is the same version that'll eventually be deployed, while 
also maintaining a clear trail of the software's maturation. 
Performing security scans as part of the promotion process 
can enable scan results to serve as a gate to block or approve 
promotion, ensuring builds are secure as they advance to 
the next stage of the SDLC. This approach helps to reduce 
errors, improve quality assurance, increase productivity, and 
reduce time to market, making it a valuable approach for any 
development team.

LEARN MORE
How Does Build Promotion Work?

https://jfrog.com/help/r/how-does-build-promotion-work/how-does-build-promotion-work


All rights reserved 2024 © JFrog Ltd. | 9

7. 	STORE AND MANAGE THE METADATA ASSOCIATED WITH EACH ARTIFACT 	
	 ALONGSIDE IT
As a refresher, metadata refers to the additional attributes related 
to an artifact. These attributes provide a means for administrators to 
organize artifacts in an effective way. Let’s look at the different types 
of metadata.

1. 		 General metadata
•	  Artifact name: The name of the artifact
•	  Artifact version: The version number of the artifact
•	  Artifact type: The type or format of the artifact (e.g., JAR, WAR, 

Docker image)
•	  Artifact size: The size of the artifact file in bytes
•	  Artifact checksum: The checksum value (e.g., MD5, SHA1, 

SHA256) of the artifact file

2. Build-related metadata
•	 	Build name: The name of the build associated with the artifact
•	 	Build number: The number or identifier of the build
•	 	Build timestamp: The timestamp indicating when the build 
		 was created

3. Dependency metadata
		 Dependencies: Information about the dependencies of the 

artifact, including their names and versions

4. Custom metadata
		 Custom metadata: Additional metadata specific to the project 

can be defined and associated with artifacts

WHY IT’S IMPORTANT
Metadata plays an important role in software 
development. It allows organizations to understand 
the history of an artifact or build and track what’s 
happened to it, such as validations as software matures 
towards release. Metadata also plays an important role 
in understanding if something has changed about the 
package, which can indicate potential security concerns. 
Capturing detailed metadata is essential for traceability  
of software and can even be used for triggering 
workflows, webhooks, or plugins. 

LEARN MORE
Collect and Manage Your Binary Metadata Using Build-Info

https://jfrog.com/blog/collect-and-manage-your-binary-metadata-using-build-info/


All rights reserved 2024 © JFrog Ltd. | 10

8. 	CREATE POLICIES TO DEFINE WHO CAN ACCESS A GIVEN REPOSITORY AND 	
	 WHAT ACTIONS THEY CAN TAKE
Organizations should have clear rules and policies in place to control 
which individuals and systems can access software artifacts, and 
when. It’s important for your artifact management solution to be able 
to implement these policies via RBAC and/or integrations with other 
identity management solutions.

WHY IT’S IMPORTANT
Software artifacts are the valuable life-blood of software 
development. Because there’s proprietary code and 
information contained within the packages, a big part of 
artifact management is ensuring that no unauthorized 
parties can access assets they’re not supposed to.

LEARN MORE
Manage Project Roles and Members in JFrog

https://jfrog.com/help/r/jfrog-platform-administration-documentation/manage-project-roles-and-members


All rights reserved 2024 © JFrog Ltd. | 11

9. 	DEFINE CLEANUP POLICIES FOR REPOSITORY HYGIENE  
	 AND PERFORMANCE
The number of binaries being produced today is mind-boggling. As 
all of these binaries accumulate, they require a significant amount 
of storage over time. Cleaning up can mean multiple things. It can 
mean actually deleting the binaries from the repository manager, 
or in many cases it can mean archiving binaries to a solution with 
less expensive storage options (this is particularly relevant for highly 
regulated industries. In this scenario, the archived binaries are 
removed from the repository manager into the archival solution.

WHY IT’S IMPORTANT
Just like in the physical world, if our “stuff” continues to 
accumulate and isn’t properly organized or managed, 
then it becomes a serious problem. Cleanup policies for 
artifact repositories are important to ensure that artifacts 
being leveraged are secure and up to date. Having these 
policies in place supports the integrity of the repository 
by preventing old, vulnerable, or malicious artifacts from 
remaining in it. By removing artifacts that are no longer in 
use, cleanup policies can also help to reduce the overall 
size of the repository. This not only helps to keep the 
repository organized and efficient, but can also help to 
reduce costs associated with maintenance.

LEARN MORE
Custom Cleanup Strategies 101

https://jfrog.com/whitepaper/custom-cleanup-strategies-101/


All rights reserved 2024 © JFrog Ltd. | 12

CONCLUSION

By incorporating these best practices into your artifact management 
processes, you’re setting yourself up for success. You'll experience 
streamlined workflows, improved collaboration, and enhanced 
project outcomes. Remember, artifact management isn't just about 
staying organized; it is about optimizing and securing your entire 
development lifecycle.

We hope that this ebook has provided you with the knowledge and 
tools necessary to revolutionize your artifact management practices. 
Embrace these best practices, adapt them to your specific needs, 
and continuously strive for improvement. With a solid foundation in 
artifact management, you're well-equipped to navigate the challenges 
of the modern business landscape and achieve remarkable results.

For a deeper dive into artifact management, see our white paper: 
Artifact Management: Best Practices for Enterprise Success

ABOUT JFROG
JFrog is on a mission to create a world of software 
delivered without friction from developer to device. 
Driven by a “Liquid Software” vision, the JFrog Software 
Supply Chain Platform is a single system of record that 
powers organizations to build, manage, and distribute 
software quickly and securely, ensuring it's available, 
traceable, and tamper-proof. The integrated security 
features also help identify, protect, and remediate against 
threats and vulnerabilities. JFrog’s hybrid, universal, multi-
cloud platform is available as both self-hosted and SaaS 
services across major cloud service providers. Millions of 
users and 7K+ customers worldwide, including a majority 
of the Fortune 100, depend on JFrog solutions to securely 
embrace digital transformation.

https://jfrog.com/whitepaper/artifact-management-best-practices/

