© @ DZone.

Gett

o
& CHECK POINT

CONTENTS

» Key Aspects of Securing
CI/CD Pipelines

ng Started With

— Challenges With Securing
Cl/CD Pipelines

CI/CD Pipeline Security s

SUDIP SENGUPTA
PRINCIPAL ARCHITECT & TECHNICAL WRITER, JAVELYNN

A continuous integration/continuous delivery (CI/CD) pipeline is an
agile workflow that automates the build, test, and deploy cycles of
application delivery. While automated deployment cycles enable
developers to release new features and updates rapidly, CI/CD
pipelines are commonly targeted by attackers who are looking to
exploit vulnerabilities and inject malicious code into application
workflows. A compromised pipeline often has severe consequences,
such as an attacker gaining access to sensitive data and even

controlling the release of new software versions.

In this Refcard, we discuss the key aspects and challenges of securing
Cl/CD pipelines as well as the fundamental steps to administer security

on CI/CD pipelines.

KEY ASPECTS OF SECURING

Cl/CD PIPELINES

A DevOps workflow is typically characterized by its non-traditional
approach to security. This is often because the security of a DevOps
workflow is not centralized or does not follow the same approach as

other workflows.

Instead, securing a DevOps workflow is often distributed among various

tools and processes.

Figure 1: Key aspects of securing CI/CD pipelines

‘ Security Automation ‘

Aspects
of CI/CD ‘ Testing ‘
Security | ‘

’ Source Control & Version Management Incident Management ‘

{ Access Control, Secrets Security

| |

’ Vulnerability Scanning
Cl/CD LA A 4 ivvv v v A4
Pipeline Source Build Test

Stages

Security on CI/CD Pipelines

- Stepsto Ensure CI/CD
Pipeline Security

- Popular Open-Source Tools

« Conclusion

Securing the CI/CD pipeline at every stage requires a thorough
understanding of the core aspects, common threats, and challenges
for CI/CD security. Core aspects of CI/CD security include testing,
automation, source control, incident management, secrets

management, vulnerability scanning, and access control.

TESTING

Continuous application testing helps ensure software security and
quality without compromising delivery cycles. Besides inspecting
application source code, testing also relies on an iterative cycle of
identifying security flaws in third-party libraries, resource-level
conflicts, and misconfigurations. It is also important to employ the
appropriate testing approaches that inspect flaws across various

stages of the CI/CD pipeline. These include:

o Static tests - These tests can be run against code that isn't
yet deployed to production, making them extremely fast
and easy to automate. However, this testing mechanism

can only test for superficial defects, which lacks offering a

Spectral

A Check Point Company

Get code security that
everyone loves.

Schedule a demo and get your questions answered.
You’'ll get a free account, and code protected.

CREATE FREE ACCOUNT

The Best Cloud Security is
Now Even Smarter! é

Today’s cloud environment needs more context
in order to provide smarter security — FAST. Clog'\?A%ga rd

From code to cloud, Check Point CloudGuard delivers
unified, cloud native security across your applications,
workloads, and network to manage risk, maintain
posture and prevent threats.

Effective Risk Management Engine

@ Network
oo Security
.

Code
Security

CSPM

CIEM

For more information on CloudGuard, visit:
www.checkpoint.com/cloudguard

- @
&Y CHECK POINT

YOU DESERVE THE BEST SECURITY

DZone.

comprehensive picture of how the code will actually behave

in a production environment.

« Dynamic tests - These tests, on the other hand, inspect
code during application runtime. This makes dynamic tests
slower and more difficult to automate, but they are efficient at
detecting flaws that static tests would normally miss. Dynamic

tests are further categorized into:

- Load testing to ensure the system can handle heavy traffic
- Stress testing to identify performance bottlenecks

- Security testing to check for vulnerabilities

o Penetration testing - This is a proactive approach used to
simulate real-world attacks and offer valuable insights into an
organization's security posture. The testing methodology also
helps validate the strength of security controls (e.g., firewalls,

antivirus systems).

AUTOMATION

By automating the processes of building, testing, and deploying code,
you can ensure that only approved code is deployed to production.
Automated enforcement of security controls eliminates errors
associated with the manual execution of repetitive tasks while making

it easier to track changes and roll back if necessary.

To ensure systems operate on the most secure versions of software,
enterprises can also leverage automation for faster roll out of security
updates and patches. Besides automatically documenting and
recording system vulnerabilities, you can also leverage automation
platforms to configure notifications and alerts to flag security threats

assoon as they arise.

SOURCE CONTROL

One of the most powerful ways of enforcing code integrity is to use
source control systems that enable enterprise teams to securely
manage code changes, collaborate with cross-functional teams, and
resolve conflicts in code before committing changes. This approach
also helps prevent accidental or malicious changes from being
introduced into the codebase, which could potentially break the build

or cause other problems downstream.

Also commonly referred to as version control, source control involves
the configuration of access permissions to the codebase, ensuring only
the approved contributors are allowed to make code changes. This
guarantees that only authorized users have access to the codebase
and that all changes are tracked and audited. Additionally, by using a
centralized source control repository, you can more easily automate

code reviews and roll back changes if something does go wrong.

INCIDENT MANAGEMENT

Incidents are unplanned events that disrupt normal operations
by compromising the integrity of a system. In the context of CI/CD
pipelines, incidents can range from simple build failures to more

complexsecurity breaches. Consequently, it's essential to formulate an

REFCARD | DECEMBER 2022

REFCARD | GETTING STARTED WITH CI/CD PIPELINE SECURITY

incident management process that encompasses various procedures

and tools to manage and respond to security events.

While the primary purpose of an incident management framework
is to reduce the impact of an event, it also helps alleviate the future
occurrence of similar incidents by helping recognize identical patterns
and fine-tuning alerting systems for expedited response. A typical
approach is also to hard-code incident response plans into workflow

tools, allowing for the automatic remediation of CI/CD security threats.

SECRETS MANAGEMENT

Managing secrets involves practices and procedures to securely
manage, store, and transmit confidential credentials, including
encryption keys, APl keys, passwords, session tokens, database

connection strings and certificates.

Effectively administered secrets management maintains a fine balance
between the ease of injecting secrets and limiting data exposure.
This essentially implies that sensitive data remain confidential, while
services can autonomously use secrets to interconnect with other

services or tools.

There are a few key things to keep in mind when managing secrets for

Cl/CD pipelines:

« Always use strong encryption for storing and transmitting
secrets. This will help ensure that even if a malicious user gains

access to your secrets, they will not be able to read or use them.

« Besureto rotate your secrets regularly. This will help prevent

attackers from using old secrets that they may have discovered.

« Make sure that only authorized users have access to your
secrets. This can be accomplished through role-based access

control (RBAC) or other authorization mechanisms.

« Useenvironment variables to store secrets as part of your
application code. This approach allows you to keep secrets
out of your code repository that prevent deeper compromise

of the system.

VULNERABILITY SCANNING
Automated vulnerability scanning helps teams enforce a shift-left
approach for security by identifying and remediating threats from early

stages of a development cycle.

Remediating vulnerabilities typically involves detecting a flaw,
assessing its impact and severity, deploying a fix, and performing a
determinative scan to ensure the flaw no longer exists. Since CI/CD
pipelines are composed of numerous components and dependencies,
vulnerability scanning for CI/CD is often broken down into:

« Source code scanning

o Third-party dependency scanning

« Containerimage scanning

« Infrastructure component scanning

[]
BROUGHT TO YOU IN PARTNERSHIP WITH 6 CHECK POINT

DZone.

To ensure all misconfigurations are appropriately attributed with their
impacts, a common practice is also to leverage databases of known

weaknesses. Some popular vulnerability databases include:

« Common Weakness Enumerations

« National Vulnerability Database

« OWASP's Top 10 CI/CD Vulnerabilities List

ACCESS CONTROL

One of the most important aspects of CI/CD security is making sure
all cluster endpoints are secured. Access control mechanisms help
mitigate the risk of data breaches by determining who has the privileges
to access specific data and resources of a pipeline. Administering
stricter policies requires users to verify their identity before they are
allowed to access sensitive information. Beyond verifying a user's
identity, access control policies also determine the allowed actions by

defining permissions granted for each user.

COMMON CI/CD PIPELINE

SECURITY THREATS

As per OWASP, although there are emerging practices and tools to
avert security incidents, attackers continue to adapt novel techniques
that exploit the distributed complexity of a CI/CD framework. Some

common security threats of CI/CD pipelinesinclude:

« Distributed denial-of-service (DDoS) attacks - are
orchestrated by compromising the server, network, or service
by overwhelming it with a high number of requests/internet

traffic in a given time

« Supply chain attacks - focus on weak links in trusted third-

party vendors that offer tools and services to the CI/CD pipeline

« Dependency confusion attacks - abuse flaws within package
managers to replace legitimate private packages with malicious

versions in public registries

« Injection attacks - are exploited over input validation errors
to inject unauthorized code into the application, which ends up

interpreting it as part of acommand or a query

+ Remote code execution attacks - are widely exploited attacks
executed through malicious code on remote machines by

connecting to them over insecure public and private networks

Table1

COMMON CI/CD PIPELINE SECURITY THREATS

TARGET CI/CD

THREAT PIPELINE STAGE ATTACK PATTERN

DDoS attacks = Deployment Leveraging botnets to target
the victim server/network,
overwhelming it and resultingin a
denial of service

Supply chain = Build Injecting malicious code into

attacks an open-source component to

compromise the entire tech stack

TABLE CONTINUES IN NEXT COLUMN

REFCARD | DECEMBER 2022

REFCARD | GETTING STARTED WITH CI/CD PIPELINE SECURITY

Dependency = Source and build Registering a package with a
confusion stages similar name to the target app of
attacks a public repository, which gets
committed to the pipeline every
time a new install occurs
Injection Deployment Altering request URLs to change
attacks the parameters of the resulting

database query, consequently
enabling unauthorized access of
restricted data

Remote code = All
execution

Tricking the target user to install
arbitrary scripts on the host
machine, which are subsequently
executed to orchestrate deeper,
system-level attacks

attacks

CHALLENGES WITH SECURING CI/CD PIPELINES
Securing CI/CD

identification, remediation, and prevention of security risks across

is a complex practice that encompasses the

each stage of a pipeline. While building a robust security posture is
the fundamental objective of the practice, the framework should also
continue to maintain the agility and pace of release cycles. As a result,
when compared to securing legacy frameworks, there are a number of

challenges with administering security on CI/CD pipelines, including:

« Improper secrets management

« Inconsistent approaches to microservices
o Inadequate security automation

« Conflicts between security and velocity

» Unauthorized access to code registries

« Developer and DevOps resistance

ADMINISTERING COMPREHENSIVE
SECURITY ON CI/CD PIPELINES

Apart from protecting data and code from potential breaches that
traverse through various endpoints of the pipeline, administering
security on CI/CD pipelines also helps maintain compliance and
prevent accidental issues such as data loss or corruption. In the
following section, we discuss the steps for effective CI/CD security

implementation and open-source tools to simplify the process.

STEPS TO ENSURE CI/CD PIPELINE SECURITY
While the specifics of a CI/CD pipeline security strategy will differ by use

case, the process typically follows a similar workflow.

1. IMPLEMENT STRONG ACCESS CONTROLS

The first step toward securing a pipeline is to control and organize
access privileges. This essentially requires policy enforcement that
restricts every user of the organization to possess similar privileges for

accessing tools and resources within the CI/CD pipeline.

Additionally, those with permissions to access the pipeline should not
be assigned default permissions to view all resources and data within

the pipeline.

N
BROUGHT TO YOU IN PARTNERSHIP WITH e CHECK POINT

DZone.

Some approaches to help enforce access controls include:

« Configure identity and access management (IAM) - helps
configure digital identities and enforce access permissions at

the entity level

« Enforce role-based access controls (RBACs) - restricts users
to access data and resources based on the functions/tasks

associated with their roles

« Apply the principle of least privilege - limits a user's access

rights to strictly what is required to perform their job

2. SECURE ACCESS TO CODE REPOSITORIES

Since a code repository acts as the central storage, review, and
management system of the code used within a DevOps pipeline,
securing repos is the next step that requires key consideration.
Public code repos, or those lacking secure controls, are often targets
of malicious exploits that lead to code tampering and loss of code

integrity. Approaches to securing code repositories include:

o Choose atrusted repository by providers with a reputation for

secure infrastructure administration and management
« Enforce the principle of least privilege for repository access
o Secure access credentials and separate them from source code
* Revoke access to the repository when itis no longer required
« Review all code changes before merging to the main branch

« Conceal personally identifying information when using public

repositories

o Enforce backup and disaster recovery for all code used within

the system

o Perform regular audits against security benchmarks

3. AVOID HARD-CODING SECRETS

Hard-coded passwords and secrets are common attack targets that
lead to data breaches and malicious access of pipeline resources.
Attackers typically target source codes within public repos and
identify hard-coded credentials through code scanning, guessing,

and learning.

As a recommended practice, security admins should implement
policies to regulate the usage of hard-coded secrets into application
code. If secrets are to be parsed, they should be included as
variables in a .gitignore file, which keeps them from being
committed into the repository. For instance, before distributing
secrets in a Kubernetes cluster, secrets should first be encrypted at

rest and then stored in the ETCD server.

A conventional approach for achieving this is by encoding the secrets in

Base64 format as shown:

$ username=$(echo -n "default" | base64)

$ password=S$(echo -n "a62fjbd37942dcs" | base64)

REFCARD | DECEMBER 2022

REFCARD | GETTING STARTED WITH CI/CD PIPELINE SECURITY

And then, defining the secrets:

echo "apiVersion: vl

kind: Secret
metadata:

name: darwin-secret

data:

>

>

>

> type: Opaque
>

> username: $username
>

password: $password" >> secret.yaml

Following the above, you can now create the secret using the kubectl

create command:

$ kubectl create -f secret.yaml

4. PERFORM APPLICATION SECURITY TESTS

Once code repositories are secure and secrets are safely managed,

developers and security teams should collectively ensure the source
code is free of any vulnerabilities. This is accomplished through
a combination of tests that are deployed at each layer of CI/CD
workflows to automatically notify security teams upon detecting

pipeline vulnerabilities.

Figure 2: Security testing of a Cl/CD pipeline

e ™. P
’ \ 4)
Interactive App \

1]
1 Continuous : i Security Testing :
! . ! Penetration Testin,
Integration ! E o
: g B Event Monitoring '
1 ! Infrastructure Scanning
1 : i Dynamic Scanning ;
1 |
1 2 1
Code : Commit Build 1 Test Review Deploy
o— s O—~—0
1 - ! Production
1 1 1 1
1 1
: Threat Modeling | Y]
Pre-Commit Review LI a 1
: IDE Scanning 1oy Continuous !
! Static Code |+ Deploymentand |
" Analysis Testing K ’ Delivery i
2 ’

Automated tests can also be combined with automated remediation
tools that use the findings of security checks to safeguard pull requests
from attack vectors. In production-grade pipelines, a common
approach is also to engage external penetration testers to provide an
unbiased view of the pipeline's security posture and help identify flaws

that may have been missed by automated tests.

5. USE ROLLBACKS TO ENFORCE SECURITY IN
PRODUCTION PIPELINES

Once policies are framed to secure pipelines, the next stage focuses
on minimizing the consequences of a successful attack. This requires
the formulation of controls that help revert to earlier, stable versions of
an application if the current one is compromised. The ability to quickly
roll back an insecure application version also helps reduce application

downtimes while expediting patch cycles for faster remediation.

6. OUTLINE AN INCIDENT RESPONSE PLAN
Incident response plans strengthen a continuous testing process by

shortening the feedback loop of identifying and addressing CI/CD

[]
BROUGHT TO YOU IN PARTNERSHIP WITH 6 CHECK POINT

DZone.

security threats. Once potential security threats have been mapped
with their respective attack vectors, the incident response plan should
outline tools and processes to be used to restore normal operations.
Besides reducing the response time for a security event, response
plans should also tag a summary of related non-critical incidents that
may signal potential issues within the application, thereby helping

developers to fine-tune their code for security and performance.

7. LEVERAGE A SECURITY INFORMATION AND EVENT
MANAGEMENT TOOL

Security information and event management (SIEM) tools go
beyond incident response plans by offering granular indicators of
various events. For CI/CD security, SIEM tools perform three critical

capabilities:
1. Threatdetection

2. Eventinvestigation

3. Response time reduction

These tools aggregate and analyze telemetry data from different
resources of the CI/CD pipeline. The composite data is then stored,
normalized, and analyzed for threat detection and trend analysis.
When configuring an SIEM solution, security testers and developers
should also integrate a continuous testing and monitoring framework

for faster discovery of security breaches and remediation.

POPULAR OPEN-SOURCE TOOLS FOR CI/CD
PIPELINE SECURITY

Securing a CI/CD pipeline is a multi-pronged process that requires an
in-depth understanding of the tech stack's core aspects, changing
threat patterns, and inherent vulnerabilities. Out of the number of tools
available, below is a list of popular open-source tools that are free,
simplify the implementation of CI/CD security, and offer comprehensive

hardening solutions.

OWASP SONARQUBE

SonarQube is a static application security testing (SAST) tool that tests
applications against the most critical risk categories within application
code. The tool performs a static analysis of pull requests to ensure that
every piece of code entering the pipeline is free of threats found on the

OWASP Top 10 list of vulnerabilities.

To help track unvalidated user inputs from the point of entry to the

stage of code execution that enables a compromise, the tool relies on

a taint analysis mechanism to detect malicious inputs flowing into the
DevOps workflow. Besides this, the tool also offers an issue visualizer
that enables closer inspection of how vulnerabilities flow within the
pipeline while offering guidance to identify the root cause and enforce

stricter controls.

OWASP THREAT DRAGON
OWASP Threat Dragon is a threat modeling tool that helps you record

possible threats within DevOps pipelines and remediate them using
threat model diagrams. The tool follows the principles and values of the

OWASP's threat modeling manifesto and implements a rule engine that

REFCARD | DECEMBER 2022

REFCARD | GETTING STARTED WITH CI/CD PIPELINE SECURITY

auto-generates threats in the pipeline and their possible mitigations.
Installed as a desktop or web application, the tool offers a simple

command-line workflow for quick threat modeling.

Threat Dragon uses the STRIDE threat model to group threats into six

categories:
1. Spoofing

2. Tampering

3. Repudiation

4. Information disclosure
5. Denial of Service (DoS)

6. Escalation of privileges

PROJECT CALICO

Project Calico is a software-defined, open-source secure networking
solution for container-native deployments, as containers sit at
the core of modern CI/CD pipelines on account of their support
for flexible, isolated, and infrastructure-agnostic deployments.
Project Calico enforces zero-trust, endpoint-level security through
GlobalNetworkPolicies to help secure both containerized hosts
and workloads. The tool also helps secure in-cluster pod traffic with
on-the-wire encryption, subsequently enforcing data integrity without

requiring specialized hardware.

ELK STACK

Also known as Elastic Stack, the ELK Stack is a powerful platform for
comprehensive observability of CI/CD pipelines. Elastic Stack is made
up of three open-source projects, each specializing in different areas of
the observability pipeline:

« Elasticsearch - a search and analytics engine that aids in

the storage and indexing of log data

» Logstash - a data processing tool that extracts log data

from multiple components of the CI/CD pipeline

« Kibana - the front-end visualization framework that
provides security event information in a graphical format

for simple analysis

Unlike other tools, the ELK Stack offers a centralized platform that
helps inspect issues with other core indicators of the system. With ELK
Stack's support of code audits, you can also identify vulnerabilities
and fix them proactively before they lead to configuration conflicts or

compliance issues.

CONCLUSION

Google's State of DevOps 2022 report suggests that using continuous

integration and delivery systems for production releases is one of the
most commonly established practices in modern application delivery.
Withincreasing adoption of DevOps practices, the foundational security
of CI/CD pipelines has come under greater scrutiny. That's because
these pipelines are often the gateway to an organization's codebase

and deployments, making them a common target for attackers.

N
BROUGHT TO YOU IN PARTNERSHIP WITH 0 CHECK POINT

DZone.

Although the report also offers early evidence that pre-deployment

security scanning is effective at finding vulnerable dependencies,

traditional security measures to administer security on CI/CD-based
workflows are often insufficient. Consequently, a DevOps practice
relies on the implementation of granular policies across every stage of

pipelines for comprehensive security.

Additional resources:

« Continuous Delivery Pipeline Security Essentials -

https://dzone.com/refcardz/continuous-delivery-pipeline-

security-essentials

+ Advanced Cloud Security: Continuous Security Strategies for Cloud

Infrastructure - https://dzone.com/refcardz/advanced-cloud-

security

« Threat Detection for Containers: Essentials to Securing Threats for
Containerized Cloud-Native Applications -

https://dzone.com/refcardz/threat-detection-for-containers

+ Cloud-Native Application Security Patterns and Anti-Patterns -

https://dzone.com/refcardz/cloud-native-application-security-1

« laC Security: Core DevOps Practices to Secure Your Infrastructure

as Code - https://dzone.com/refcardz/iac-security-1

WRITTEN BY SUDIP SENGUPTA,
PRINCIPAL ARCHITECT & TECHNICAL WRITER,
JAVELYNN

Sudip Sengupta is a TOGAF Certified Solutions
Architect with more than 17 years of experience

working for global majors such as CSC, Hewlett

Packard Enterprise, and DXC Technology. Sudip now works as
a full-time tech writer, focusing on Cloud, DevOps, SaaS, and
cybersecurity. When not writing or reading, he's likely on the
squash court or playing chess.

600 Park Offices Drive, Suite 300
‘ D Z One Research Triangle Park, NC 27709
® 888.678.0399 | 919.678.0300

At DZone, we foster a collaborative environment that empowers developers and
tech professionals to share knowledge, build skills, and solve problems through
content, code, and community. We thoughtfully — and with intention — challenge
the status quo and value diverse perspectives so that, as one, we can inspire
positive change through technology.

Copyright © 2022 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or
by means of electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

[]
@ CHECK POINT

