
Evaluate your
integration
maintenance
posture
A guide to performing best-in-class
integration maintenance

Contents x

SECTION 1

Introduction 1

1.0 How to use this guide 1

1.1 Background on integration maintenance 2

SECTION 2

Integration maintenance must-haves 3

2.1 Monitoring and alerting 5

2.2 Error handling 7

2.3 Internal documentation 9

2.4 Staffing 11

2.4 Service failover, disaster recovery, and redundancy 13

SECTION 3

Diagnosing your approach to maintenance 16

3.1 Integration maintenance self-assessment 17

3.2 Maintaining your integrations with Merge 18

Contents

1

SECTION 1.0

Introduction

How to use this guide

This guide is written for engineering leaders

who have built integrations in-house and

need to get up to speed on maintenance best

practices. It can also be a reference for those

who are beginning to build integrations.
 

 Reference our integration maintenance must-haves to understand what best-in-class

integration maintenance should look like

 Use the checklist in this guide to grade your approach (or planned approach) to

performing integration maintenance

 Learn how Merge can help you maintain integrations at scale.

Background on integration maintenance 2

SECTION 1.1

Background

on integration
maintenance

There’s a common misconception in the world of product integration: the initial build
is harder than long-term maintenance. In reality, this couldn’t be further from the
truth.

Integration maintenance is the work your engineers need to do to keep integrations
operational after you’ve onboarded customers. Maintenance is critical, expensive,
and persistent for the entire lifetime of an integration.

Integrations management, separately, is all of the business operations that focus on
how your customer interacts with their integration. This includes customer success
responses to customer-facing issues.

At Merge, our job is to make integrations painless for B2B companies. We’ve distilled
our experience in helping Ramp, Drata, Guru, and thousands of other customers
maintain integrations into this guide.

3

SECTION 2.0

Integration
maintenance
must-haves

Background on integration maintenance 4

SECTION 2.0

Integration
maintenance
must-haves
The integration maintenance needs of modern SaaS companies fall into several buckets.
Development teams with the strongest maintenance postures have processes in place for
all of the items below.

Integration

Maintenance

Failure,

recovery, and
redundancy

Error

 handling

Staffing

Internal
Documentation

Monitoring

and alerting

Integration maintenance must-haves 5

SECTION 2.1

Identify integration issues
quickly and easily with
monitoring and alerting
Overview

Proper monitoring and alerting provides visibility on how your integrations are
performing and gives your team time to respond to issues before they impact users.

How to approach monitoring and alerting

 Invest in the right tooling. Your engineers
shouldn’t invest their limited time and
resources on building and maintaining
monitoring and alerting infrastructure;
tools like Datadog or Splunk, while
expensive, can meet your needs

 Integrate your monitoring tool(s) with
the applications your engineers already
work in. To help engineers find issues
quickly, you can connect your monitoring
tool(s) with a platform like Slack, and
build a workflow that alerts a designated
Slack channel of any issues

 Establish an on-call roster for
integration-specific issues. Since
integration issues can occur any time, an
engineer will need to be on-hand 24/7.

Tooling Integrations
On-call

Engineers

Integration maintenance must-haves 6

SECTION 2.1

Identify integration issues quickly
and easily with monitoring and
alerting, cont.

Examples of monitoring and alerting postures

Poor

Functional

Limited monitoring and real-time alerting
in place. Ad hoc or inconsistent auditing
and testing.

Real-time monitoring and proactive
alerting. Clear response training across
teams.

Excellent
Comprehensive monitoring across
performance, availability, and error rates. Real-
time alerts based on established thresholds
including severity-based alerts. Automated
self-healing operations if possible.

Integration maintenance must-haves 7

SECTION 2.2

Minimize the impact of any
integration issue through
error handling

Overview

Error handling consists of the tools and processes in place for engineers to detect and
handle integration anomalies. Done well, error handling keeps your application
functioning in as many potential error states as possible, even if an API is temporarily
unavailable.

How to approach error handlin

 Identify potential points of failure and develop solutions for each scenario in advance.
Your team should dedicate time to listing out all possible errors, and, for each, decide
how to troubleshoot and resolve it. If possible, try to build automated solutions to save
your engineers time

 “Normalize” response errors so that your teams can diagnose and resolve them faster.
An application may provide a response error that’s uniquely worded but effectively
means the same thing as certain response errors from other applications. If you and
your team come across this, you should categorize or unify errors that are frequently
returned

 Establish processes for detecting and resolving unexpected errors. While you can try
to account for integration issues proactively, you don’t know what’ll break an
integration until it’s live. Therefore, it’s worth developing a standardized issue resolution
protocol for addressing novel issues.

Integration maintenance must-haves 8

SECTION 2.2

Minimize the impact of any
integration issue through error
handling, cont.

Examples of error handling postures

Poor

Functional

Limited error detection, logging, and fault
tolerance.

Catch critical errors, detailed and secure
logging, error tracking, reporting,
comprehensive testing.

Excellent
Comprehensive logging, customer-facing
error messaging (if needed), fault tolerance,
error reporting, and documentation.

Integration maintenance must-haves 9

SECTION 2.3

Prevent knowledge gaps by building
and maintaining comprehensive API
documentation

Overview

Your internal resources can cover high-level overviews on integrations, API specs, details
on how they impact customers, and testing practices. In many cases, they can and
should also include code samples and tutorials.

How to approach internal documentatio

 Designate an engineer to project lead documentation development. While the
engineers who are most familiar with an integration should document it, a designated
“project leader” can confirm whether they’re adding enough detail and aren’t including
superfluous information

 Consistently document key information for each integration. You should include details
like who built it, how it was built, and why it was built the way it was. You can also
include details like the edge cases that have cropped up previously and broken the
integration and quirks that are specific to that integration

 Require your engineers to review and provide updates to your internal documentation.
You can share the documentation at a certain point in an engineer’s onboarding
process; and you can task all of your engineers with reviewing the documentation and
adding their feedback to it on a regular basis (e.g. once per quarter).

Integration maintenance must-haves 10

SECTION 2.3

Prevent knowledge gaps by building
and maintaining comprehensive API
documentation, cont.

Examples of approaches to internal documentation

Poor

Functional

Limited to no written documentation. Knowledge
is distributed between team members and
decentralized across multiple internal systems.

Core knowledge documented,
centralized, and included in onboarding.

Excellent
Comprehensive, up-to-date documentation
shared during onboarding and maintained by
members of the team as API reference changes.
Includes procedures, tools, and tutorials.

Integration maintenance must-haves 11

SECTION 2.4

Allocate the optimal number of
staff to integration projects

Overview

Dedicating the right amount of engineers toward maintaining integrations can be
difficult. On the one hand, you need enough personnel available to address issues over
time; and on the other hand, these engineers are expensive, and if you hire too many of
them, you risk limiting their productivity.

How to approach staffin

 Hire engineers who have experience with relevant 3rd-party APIs and your existing
tooling. Recruiting engineers who have limited experience with the relevant 3rd-party
APIs and/or your monitoring and alerting tools can translate to a long, resource-
intensive onboarding process

 Analyze integration performance in conjunction with momentum on core product
initiatives frequently. If integrations break more often and/or remain broken for longer
stretches, it can signal that your engineers are under water. Similarly, if your engineers
fail to meet key milestones on your product roadmap, it may be worth assessing if
integration maintenance is the culprit.

 Survey your engineers frequently to gauge their morale and their existing workload.
To prevent engineers from leaving and to keep them engaged, you can send them an
anonymous survey every so often (e.g. once a month) to determine how they’re feeling
and whether they need more support.

Integration maintenance must-haves 12

SECTION 2.4

Allocate the optimal number of staff
to integration projects, cont.

Examples of managing staffing

Poor

Functional

Limited staffing, coverage gaps, and regular
customer impact due to a lack of resourcing.

Core knowledge documented,
centralized, and included in onboarding.

Excellent
Sufficient staffing and systems in place to
immediately respond to unforeseen errors, bugs,
and edge cases – limiting impact to customers.

Integration maintenance must-haves 13

SECTION 2.5

Plan for issues that go beyond APIs
to maintain high performance

Overview

Issues that extend beyond the API integrations can also lead them to break, whether it’s
your server going down, a network outage, or your monitoring infrastructure crashing.
To accommodate these critical errors, you’ll need to adopt the right set of service
failover, disaster recovery, and redundancy processes.

How to approach service failover, disaster recovery, and redundanc

 Identity the full gamut of potential issues and develop contingency plans for each.
Similar to error handling, you simply don’t know which issues will occur. To ensure your
team is equipped for any situation, you should develop and document incident response
plans for each scenario

 Store key items related to your API integration in a secure location. This includes
credentials, scripts, version libraries, and anything else that you’d consider core to your
API integrations.

 Backup data in a separate location. This ensures that the local disruption to the main
data source isn’t impacting the backup. Separately, you’ll also want to test the backup on
a frequent basis to ensure it can be restored successfully.

Integration maintenance must-haves 14

SECTION 2.5

Plan for issues that go beyond APIs
to maintain high performance, cont.

Examples of failover, disaster recovery,
and redundancy postures

Poor

Functional

Infrequent backups, irregular testing, and
undocumented restoration procedures.

Regular data backups, testing, and quick
recovery procedures in event of API failure.
System redundancies, such as backup
services and cached data, are also in place.

Excellent
Regular full data backups, including metadata. Audits,
RCAs and improvements for any integration failures.
Fully tested system redundancies, with practiced
recovery procedures.

15

“Integration maintenance is a

painful, unavoidable, and
ongoing tax you incur from the

day you decide to begin building.

However, the right tools and

processes can empower your team

to act fast and deliver the best

experience for your customers.”

- Gil Feig, Co-Founder and CTO of Merge

16

SECTION 3.0

Diagnosing your
approach to
maintenance

Diagnosing your approach to maintenance 17

SECTION 3.1

Integration maintenance
self-assessment
So, how are you performing? Rate yourself across each of these categories
to better understand the overall strength of your maintenance approach.

Maintenance category Your rating

(1 = poor, 2 = functional, 3 = excellent)

Monitoring and alerting

Error handling

Internal documentation

Cost management and staffing

Failover, recovery, and redundancy

Total:

1-5: critical to poor 6-10: fair to good 11-15: good to excellent

Note: if you’re already maintaining your integrations in-house and have a “1” or “2” in any of the above
categories, we strongly recommend that you prioritize improving this on behalf of your users. You can
also to learn how thousands of other B2B companies have leveraged Merge to maintain
their integrations.

connect with us

https://www.merge.dev/get-in-touch

Diagnosing your approach to maintenance 18

SECTION 3.2

Maintain your integrations
with Merge
If you handle integrations in-house, or if you’re planning to, you should be prepared to

invest heavily on the right resources and commit to maintaining them long-term in the

interest of your business and users. You’re fully responsible for the entire integration

lifecycle which carries with it a growing set of complexity to manage over time.

The costly financial and time investments required to maintain integrations is a core reason

why we founded Merge.

We’re the leading unified API solution that allows you to add an entire category of

integrations — such as HRIS, CRM, ATS, or file storage — by building to single unified API.

Also, once you connect to one of our unified APIs, we'll handle all maintenance activities

on your behalf. Our support and partner engineering teams have expertise in building and

maintaining third-party APIs and work closely with our customers to ensure integrations are

performing correctly — so your teams don’t have to.

You can learn more about Merge's approach to maintenance by scheduling a demo with

one of our integration experts.

https://www.merge.dev/get-in-touch
https://www.merge.dev/get-in-touch

	01
	02
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

