
W
H

ITEPA
PER

Escape the Black
Box of Security
Visibility with
Signals

Dive deep into Fastly's signals technology and learn how to
gain deeper insights and create granular workflows from your
application traffic.

PG 2 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

Introduction

The Fastly Next-Gen WAF has been at the leading edge of security since 2014. Originally
launched as Signal Sciences, we’re pioneering a new paradigm in detection, blocking, and traffic
analysis against application layer attacks for companies around the world.

A significant reason that our Next-Gen WAF (web application firewall) remains an award-winning
solution in a decades-old, seemingly-stale industry is that we not only think about attack traffic
in an entirely different way, but we also designed our solution to work with the way security
practitioners naturally operate.

Legacy WAFs have historically placed their decisioning technology in a black box, preventing
customers from understanding why traffic was blocked and limiting what they can do with it.
Fastly lets security teams see and organize their traffic in an entirely different way. While legacy
WAFs limit your vision and capabilities, our NGWAF (next generation WAF) shines a spotlight and
lets you take the reins thanks to a feature we call signals.

This paper will cover four major aspects of signals: their origin, system signals, custom signals,
and how signals can be utilized at the edge. This primer includes various types of signal
examples, real-world use cases from our customers, and can serve as a guidepost for both
experienced technologists wanting to learn more, and current customers who want to take their
signals knowledge to the next level.

PG 3 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

Table of Contents

Redefining Security Through Signals � 4

Diving into System Signals � 6

Custom Signals � 9

Signals at the Edge and more � 14

Conclusion � 19

Additional Resources � 19

PG 4 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

1. Redefining Security
Through Signals
As security practitioners, the founders at Signal
Sciences knew firsthand that the WAF market was not
keeping up with the pace of innovation. They saw their
peers struggling to deploy manual solutions against
sophisticated and innovative attackers. Security teams
needed solutions that empowered them to be more
agile, effective, and efficient against an ever-changing
landscape.

After experiencing the faults of signature-based WAFs
while at Etsy, the founders left and took an entirely
different approach to building a new solution. One
differentiating technology is SmartParse, which
tokenizes each request coming through and looks
at that hash to take a contextual understanding of
the request. For example, regardless of whether the
request is matching certain terms, is it in the format that
would actually execute for cross-site scripting or SQL
injection? This approach provides a much lower false-
positive rate and is much faster than signature-based
detection approaches.

Another differentiating technology and the focus of
this paper is signals. A signals-based approach to web
application security allows teams to gain more visibility
and take greater control over their application traffic.

Defining Signals

A signal is a descriptive tag or label assigned to a traffic
request as it’s inspected. Requests are tagged with
signals based on the logic of your active rules. Fastly’s
NGWAF has two types of signals:

1. System signals: common attack or anomalous
 web traffic requests that are labeled directly
 by Fastly, such as SQL Injection, XSS, or
 searchbot imposter.
2. Custom signals: web traffic requests that are
 created and labeled by customers per their
 unique application, such as homepage_search
 or 2023_blocklist_IPs.

Signals can be generated into charts, queried in logs,
incorporated into custom rules, and more. It gives you a
unique way to see your traffic data and take action on
requests based on your defined criteria.

Etsy is a digital marketplace retailer that
pioneered DevOps practices and digital
transformation throughout its tech stack�
Seeing a market need for a new way of securing
applications and APIs, a group of security
practitioners left Etsy and became the founders
of Signal Sciences�

Examples of signals on an individual traffic request

PG 5 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

Powering System Signals: Rejecting Regex with SmartParse

SmartParse tokenizes web requests to provide more accurate detections

System signals, like SQL Injection or XSS, are
automatically defined and maintained by our NGWAF.
Failing to quickly and accurately detect these OWASP
Top 10 types of attacks can leave your apps vulnerable
by letting attacks through or blocking legitimate
customers.

The power of system signals is only as good as our
ability to accurately inspect and identify these requests:
this is where SmartParse helps out.

Legacy WAFs have historically relied on regular
expression (regex) signatures to power their inspection
and decision-making processes. This means a WAF
would inspect a request payload, and if parts of the
payload match a signature of an attack or exploit, the
WAF would automatically block it.

The “fuzziness” of regex rules - defining them perfectly
to block bad requests and allow good ones - is an
ongoing battle. For example, if an e-commerce customer
wants to buy a British flag on an e-commerce site, for
example, the search term Union Jack could be flagged
as a SQLi attack and a legitimate user potentially
blocked.

This leads to a lot of time spent tuning for false positives
and ultimately lowers the trust that you may have for
your WAF.

SmartParse is the heart of our product because it
informs how our system signals deliver information to
you. It lays the foundation of trust that you have in our
ability to deliver quick and accurate protection.

False positives are a timesink that can break
applications and block legitimate users� Here
are some innocuous phrases that we've seen
flagged as an "attack" by regex-based WAFs�

• ls 300 lexus
• party NOT (baby and wedding)
• Oh and where is the key box?
• 20151114-Beta-Stop-Hunger-Now (31)-S.jpg
• Neurology & Sleep Specialist
• java lang courses
• Cozy and modern open space

Cloud Engine

PG 6 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

2. Diving into
System Signals
System signals are powerful tools because they
immediately identify the type of payload coming through
the application. You can see individual requests on the
console, then display these signals on your dashboard
or generate reports to get a comprehensive look at your
application’s traffic trends. Let’s explore system signals
on a deeper level.

What are System Signals?

System signals are our “out of the box” signals that
assign a tag based on inspecting a client's request.
When requests are made to your web application, our

NGWAF agent uses your active rules to identify which
requests need to be tagged with a signal and then tags
them with the appropriate signal.

We have two types of system signals:

• Attack
• Anomaly

With over three dozen system signals, our NGWAF has
comprehensive coverage over the malicious traffic that
matters most to your team. Below is a small sample of
what we automatically define for you:

As you can see from the sample list, our NGWAF covers standard vectors like XSS and provides insight into
potentially malicious IP traffic. But as tech stacks evolve and attack surfaces increase, our team also identifies and
creates signals for more recent vulnerabilities such as Log4Shell and emerging technologies like GraphQL to ensure
your coverage is up to date.

Log4J JNDI Abnormal Path

GraphQL Max Depth Datacenter Traffic

GraphQL Max Depth Duplicate Header Names

Log4J JNDI Malicious IP Traffic

GraphQL Max Depth SearchBot Impostor

Attacks Anomalies

Sample listing of System Signals

https://docs.fastly.com/signalsciences/using-signal-sciences/signals/using-system-signals/#attacks

PG 7 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

Signal Highlight: GraphQL

Developers are rapidly adopting GraphQL, an open-
source standard query language, as an alternative to
REST to meet the flexibility needed to maintain modern,
high-growth APIs. Our NGWAF was one of the first WAFs
to offer coverage through GraphQL Inspection, which
detects, inspects, and blocks OWASP-style injection
attacks, denial of service (DoS) attacks, and other

vulnerabilities that target GraphQL APIs. We include
GraphQL-specific signals in the console for customized
protection based on user configuration.

With these signals, you can define rules to route
requests when certain thresholds or events happen.
Some of these signals are included below.

GraphQL Max Depth
A request has reached or exceeded the maximum depth
allowed on the server for GraphQL API queries

GraphQL Introspection
An attempt to obtain the schema of a GraphQL API. The
schema can be used to identify which resources are
available, informing subsequent attacks.

GraphQL Undefined Variables
A request made to a GraphQL API containing more variables
than expected by a function

GraphQL Duplicate Variables A request that contains duplicated variables

GraphQL Missing Operation Name
A request has multiple GraphQL operations but does not
define which operation to execute

GraphQL IDE
A request originating from a GraphQL Interactive
Development Environment (IDE)

GraphQL Signal Signal Description

On the Fastly console, you can utilize GraphQL-specific signals to create a Request, Rate Limit or Exclusion rule to
a Corp or Site.

Let’s take a look at an example of creating a Request Rule using the GraphQL Max Depth Signal to block traffic in
order to avoid misuse or a potential DoS attack.

https://learn.fastly.com/security-four-things-every-security-director-should-know-about-graphql
https://www.fastly.com/resources/datasheets/security/graphql-inspection

PG 8 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

First, navigate to the site rules page, create signal exclusion rule. and select GraphQL Max Depth Signal from the
signal drop down menu. In the below rule, we match on any requests that contain the “GraphQL Max Depth” signal
and block them with the HTTP status code “406 Not Acceptable.”

PG 9 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

3. Custom Signals

Fastly’s custom signals empower you to tag and
organize your application traffic in a way that is tailored
to your unique environment and use cases. You can
tag interesting or anomalous traffic requests, making
it easier to surface them to the broader team or make
more precise blocking/allow decisions.

When Fastly sees a traffic request come through the
network, you can configure rules to take one or more of
of signals:

1. Block: terminate the traffic request
2. Allow: permit the traffic request
3. Tag: add a custom signal

PG 10 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

A custom signal allows you to surface specific types
of requests and make them visible on your console.
Furthermore, you can create and enforce rules based on
any traffic request that contains that tag.

Let’s dive deeper into how you can utilize custom signals
in your organization.

The Power of Custom Signals

Traditional WAFs were created to stop malicious traffic
from reaching origin servers, which served its purpose
well during the internet age of HTML and PNGs.

But Layer 7 traffic has exploded over the past decade,
with dynamic content spanning applications, APIs,
microservices, and more. Coupled with modern DevOps
practices and CI/CD it becomes very difficult for a
traditional WAF to keep up.

When a traditional WAF detects a bad request, the
security team is presented with only two options: block
or allow. Like mail sorting at the post office, you want to
let envelopes and packages through and keep out the
damaged or torn items that can break your machinery.
But sometimes you want to do more than that - like
track how many envelopes are coming from San
Francisco, or how many packages have biohazard
warnings.

Once this information is tagged correctly, it can be used
to inform the policies that sort and route items through
your mail facility.

By surfacing which packages are biohazardous, you can
direct them to a safer part of the post office.

To make this capability less abstract, let's walk through
how a company can use custom signals to reduce traffic
noise by blocking web crawlers and tagging anonymous
email domains.

Reducing Traffic Noise with Custom
Signals

The owner of acmecorp.com has noticed an uptick in
vulnerability scans coming from a variety of internet
sources. One thing they all seem to have in common is
that they are sending web requests to the IP of their
website and not the proper hostname acmecorp.com.

We know that real users type in "acmecorp.com", not its
IP address "192.168.1.10", indicating that the requests
are actually coming from non-human traffic, like web
crawlers.

These malicious web crawlers cause unnecessary noise,
data transfers, and resource consumption, which can
ultimately result in a higher cloud spend. Additionally,
the owner noticed that fraudulent accounts were being
created using disposable/anonymous email generators,
which can lead to fraudulent transactions and reduced
revenue.

Our NGWAF’s custom signals can help by blocking
web crawlers and tagging these anonymous email
generators.

23% of security leaders think that keeping up with the volume of security alerts is their organization’s
primary challenge.

 - ESG research report: The rise of cloud-based
security analytics and operations technologies

PG 11 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

Next, you can add a rule that states that any request that does not contain the signal Organization Domains would be
blocked.

Custom Signal 1: Blocking Web Crawlers

First you can create a rule that tags any traffic that contains the domain acmecorp.com or acmecorp.net with the
signal called Organization Domains.

PG 12 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

Now that the signal and rules are in place, you can go ahead and inspect the incoming traffic to see progress. On the
dashboard, you can see that requests coming from a random bot crawler that doesn’t know the name of the site are
being blocked.

PG 13 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

Custom Signal 2: Tagging Anonymous Email Domains

To track how many accounts are being created from anonymous email addresses, first you generate a rule that
targets requests that successfully register and log into our sign-up form using a specific domain. You add a signal
to those requests called Disposable Email. Just like the example above, you can create another rule that blocks any
request that contains the Disposable Email signal.

PG 14 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

Now when you look up the traffic containing the Disposable Email signal, you can see that it’s blocked. This reduces
fraudulent account registration and reduces resource consumption.

4. Signals at the Edge
and more
The decisioning logic that inspects a potential attack
was developed to fall in line with the way traffic
requests are handled - when a client submits a request
to visit a webpage, a WAF sits between the client and
the origin server to make sure the request is valid (not
an attack) before the origin can serve up the content.

The explosion of edge computing is bringing content
closer to clients and end-users, serving content and
enabling innovation faster than ever before. With
our NGWAF sitting at the edge, we can enable more
sophisticated blocking and rate-limiting by enforcing
these policies at the edge.

In this next section, we’ll now look at two additional use
cases – identifying known actors and response tracking
– and see how signals help in these areas to strengthen
your security posture. We’ll also look at how moving
some of the security decisioning to Fastly’s edge can
further protect downstream systems through the use of
custom response codes.

Identifying Known Actors

There is a constant drumbeat around preventing web
threats, and for good reason: code injection attacks,
customer data exfiltration, and API abuse are constant
threats to service delivery on the web.

There is, however, another side to this coin that’s often
not addressed during threat modeling: reducing noise
and alert fatigue for overburdened teams. When security
teams are chasing false positives instead of actual
threats, they’re operating with reduced effectiveness.

According to a report by ESG, 23% of security leaders
think that keeping up with the volume of security
alerts is their organization’s primary challenge. One
way to combat cybersecurity alert fatigue is by using
your WAF to automatically identify known actors. By
tagging traffic or requests with metadata that marks
them as “good,” more mental room is left for teams to
maximize efficiency in their threat mitigation.

https://www.esg-global.com/hubfs/ESG-Research-Report-Cloud-scale-Security-Analytics-Dec-2019.pdf

PG 15 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

Using the NGWAF, you can add a specific signal to this
category of traffic. This is done using an IP address or
any other distinguishing identifier in the HTTP request.
Here is how you might configure your site rules to add a
custom signal to identify a popular scanner based on a
list of IP addresses.

In the above screenshot, we’ve added three fictitious IP addresses representing known vulnerability scanners. Once
the list is created, we can attach a signal to this category of traffic. This can be done by creating a new request rule
as follows:

Once a list is created, the site rule itself is very
straightforward. Let’s outline the basic steps in the UI.

First, let’s create a list that we’ll use in the rule itself.
In this example, we know the list of IP addresses to
identify:

PG 16 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

With this rule, we are allowing traffic from the IP
addresses in this specific list and then tagging that
request with the signal known-scanner for future
reference. Without this rule, the NGWAF would perform
attack detection on this traffic and block the scanner
from doing its job, creating unnecessary alerts for your
security team. With the signal known-scanner attached
to the request, you can also confirm and visualize the
activity you expect from the scanner.

Next, we’ll discuss a more complex way of tracking
attacks, by looking not only at the incoming payload but
also at the effect the request had (or didn’t have) on a
downstream application.

Response Tracking

Basic approaches to web security threat modeling often
appear to follow a simplistic storyline about a would-be
attacker. First, they’re wearing a dark hoodie (of course),
and second, they possess a single, well-crafted payload
that, if sent at the right part of the application (URL), will
wreak havoc on your system -- likely in the form of data
exfiltration, denial of service or other forms of abuse.

The second part of this story goes like this: If only we
had a perfect way to catch this attack (expressed as
a malicious HTTP request) and stop it before it did
damage, we’d achieve some sort of web security bliss.

PG 17 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

This thought process is the common first layer of
defense for web application security. The consequence
of this line of thinking is a model based on known
threats or signatures. It’s no wonder companies end up
with the hundreds (or potentially thousands) of rules
commonly found in legacy WAFs.

How do we improve on this? With custom signals, we
can extrapolate this logic and go even further. In the
NGWAF, both the request and response are used to
determine whether an attack or anomaly signal is added
to a request/response pair. For example, a good handful
of our system signals (such as forceful browsing) rely on
knowledge of the request and response before tagging
a request with the signal.

This extends the protection from “fire and forget” types
of attacks towards gaining visibility and insights into
more sophisticated attacks. What if we could determine
how attackers are probing for weaknesses in an
authentication endpoint?

Authentication APIs are a common target for attacks
because, by default, they need to be widely exposed to
work properly. A custom signal to track authentication
failures (in this case HTTP 302) can inform you of
excessive login failures which could indicate an
attempted credential-stuffing attack.

What follows is a basic template for how you would
create a site rule for this:

PG 18 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

to turn into additional enforcement actions in Fastly’s
Delivery (Varnish) or Compute@Edge environments.

For Varnish customers, this is as simple as adding logic
around the beresp.status variable. Compute@Edge
customers could do something similar based on relevant
variables for the response (which would be language
dependent).

The beresp.status contains the HTTP status code of
the response received from your origin. For example, if
your site rule returned a 550 instead of a 401, your edge
security decisions at this stage could include blocking,
edge rate limiting, or tar pitting the client – all of which
would have the effect of slowing the attacker down and
keeping traffic and load away from your origin during
an attack. You can enable the additional protection
by updating the rule to change the rule to block and
altering the response code as follows:

In this example, we’ve mocked up a dashboard to track
incidences of this signal over the last hour. You can see
a higher concentration of signal activity between 10:30
and 10:45, which may indicate an attempted attack,
especially if your known baseline is much lower.

Extending Protection to the Edge

Tracking responses is great, but what about
enforcement actions such as blocking or rate limiting?
What if you want to perform these actions upstream?
At this point, it seems like the opportunity has passed
because the agent has already completed processing
and the response is heading back to the client.

This is where extending your security perimeter to the
edge can help further. Signals on the response can be
passed back to the edge using custom response codes,
which allows the intelligence generated by the NGWAF

Here, we’re tagging authentication failures with a signal AuthFailure. It’s not clear that something bad has happened
yet, but too many failures when you are not expecting them could indicate an attack in progress.

This type of leading indicator could alert you to add additional security controls to other parts of the application that
handle authentication; it could indicate a potential coordinated attack. The signal can be graphed as follows with a
custom dashboard:

https://developer.fastly.com/reference/vcl/variables/backend-response/beresp-status/
https://www.fastly.com/blog/gain-more-control-with-custom-response-codes-for-the-fastly-next-gen-waf

PG 19 | LEVERAGING SIGNALS FOR EFFECTIVE SECURITY AND DEVOPS STRATEGY

Once the rule is changed in the NGWAF, additional
security logic can be added to Varnish to take action
when the value of beresp.status has a value of 493. The
benefit of security enforcement at the edge increases
as the sophistication and scale of the threat to your
application increases.

Fastly’s NGWAF can distribute security decisions
in multiple places throughout your environment
-- providing protection and decisioning in more
places whether at the Edge, inside your applications
themselves (Core deployment), or as a standalone
reverse proxy (Cloud WAF).

Conclusion

Fastly's NGWAF is a pioneering solution in modernizing the technology used to detect, block, and analyze
traffic against application layer attacks. Unlike legacy WAFs, which operate as black boxes, our NGWAF uses
signals to provide visibility into why traffic was blocked, making the decision path searchable and organized.

Fastly’s two types of signals, system signals and custom signals provide both out-of-the-box visibility into
common web attacks and customized visibility into your specific application traffic. Additionally, signals can
be used to enforce actions at the edge, keeping unwanted traffic and its load even further away from your
applications. Using signals to surface what types of attack trends are hitting your apps or APIs helps you
double down on your defensive protections in those areas. With signals, you can maintain strong security
visibility across your entire portfolio of applications, leading to increased efficiency and productivity for your
team.

Ultimately, Fastly's NGWAF is a powerful yet easy-to-use tool for any organization looking to protect its web
apps and APIs against sophisticated attackers. To learn more and see for yourself how effective signals are,
visit fastly.com or contact us.

Additional Resources

Fastly Next-Gen WAF Architecture and Deployment Overview
2022 Gartner® Magic Quadrant™ for Web Application and API Protection (WAAP)
Fastly Next-Gen WAF GraphQL Inspection Datasheet

https://www.fastly.com/products/web-application-api-protection
https://www.fastly.com/products/cloud-security/contact-sales
https://learn.fastly.com/rs/025-XKO-469/images/signal-sciences-data-sheet-architecture-overview.pdf
https://learn.fastly.com/gartner-magic-quadrant-waap.html
https://www.fastly.com/resources/datasheets/security/graphql-inspection

